Pyridostigmine Restores Cardiac Autonomic Balance after Small Myocardial Infarction in Mice
نویسندگان
چکیده
The effect of pyridostigmine (PYR)--an acetylcholinesterase inhibitor--on hemodynamics and cardiac autonomic control, was never studied in conscious myocardial infarcted mice. Telemetry transmitters were implanted into the carotid artery under isoflurane anesthesia. Seven to ten days after recovery from the surgery, basal arterial pressure and heart rate were recorded, while parasympathetic and sympathetic tone (ΔHR) was evaluated by means of methyl atropine and propranolol. After the basal hemodynamic recording the mice were subjected to left coronary artery ligation for producing myocardial infarction (MI), or sham operation, and implantation of minipumps filled with PYR or saline. Separate groups of anesthetized (isoflurane) mice previously (4 weeks) subjected to MI, or sham coronary artery ligation, were submitted to cardiac function examination. The mice exhibited an infarct length of approximately 12%, no change in arterial pressure and increased heart rate only in the 1st week after MI. Vagal tone decreased in the 1st week, while the sympathetic tone was increased in the 1st and 4th week after MI. PYR prevented the increase in heart rate but did not affect the arterial pressure. Moreover, PYR prevented the increase in sympathetic tone throughout the 4 weeks. Concerning the parasympathetic tone, PYR not only impaired its attenuation in the 1st week, but enhanced it in the 4th week. MI decreased ejection fraction and increased diastolic and systolic volume. Therefore, the pharmacological increase of peripheral acetylcholine availability by means of PYR prevented tachycardia, increased parasympathetic and decreased sympathetic tone after MI in mice.
منابع مشابه
Increase in parasympathetic tone by pyridostigmine prevents ventricular dysfunction during the onset of heart failure.
Heart failure (HF) is characterized by elevated sympathetic activity and reduced parasympathetic control of the heart. Experimental evidence suggests that the increase in parasympathetic function can be a therapeutic alternative to slow HF evolution. The parasympathetic neurotransmission can be improved by acetylcholinesterase inhibition. We investigated the long-term (4 wk) effects of the acet...
متن کاملPyridostigmine Improves the Effects of Resistance Exercise Training after Myocardial Infarction in Rats
Myocardial infarction (MI) remains the leading cause of morbidity and mortality worldwide. Exercise training and pharmacological treatments are important strategies to minimize the deleterious effects of MI. However, little is known about the effects of resistance training combined with pyridostigmine bromide (PYR) treatment on cardiac and autonomic function, as well as on the inflammatory prof...
متن کاملPyridostigmine prevents haemodynamic alterations but does not affect their nycthemeral oscillations in infarcted mice
The increase in acetylcholine yielded by pyridostigmine (PYR), an acetylcholinesterase inhibitor, was evaluated for its effect on the haemodynamic responses-mean arterial pressure (MAP) and heart rate (HR)-and their nycthemeral oscillation in mice before and one week after myocardial infarction (MI). Mice were anesthetized (isoflurane), and a telemetry transmitter was implanted into the carotid...
متن کاملCholinergic stimulation with pyridostigmine protects myocardial infarcted rats against ischemic-induced arrhythmias and preserves connexin43 protein.
We investigated the effects of acute pyridostigmine (PYR) treatment, an acetylcholinesterase inhibitor, on arterial pressure (AP), heart rate (HR), cardiac sympathovagal balance, and the incidence of arrhythmias during the first 4 h after myocardial infarction (MI) in anesthetized rats. Male Wistar rats were implanted with catheters into the femoral artery and vein for AP recordings and drug ad...
متن کاملHigh-mobility group box 1 restores cardiac function after myocardial infarction in transgenic mice.
AIMS High-mobility group box 1 (HMGB1) is a nuclear DNA-binding protein and is released from necrotic cells, inducing inflammatory responses and promoting tissue repair and angiogenesis. To test the hypothesis that HMGB1 enhances angiogenesis and restores cardiac function after myocardial infarction (MI), we generated transgenic mice with cardiac-specific overexpression of HMGB1 (HMGB1-Tg) usin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014